Separability and entanglement of identical bosonic systems

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2006 J. Phys. A: Math. Gen. 39 L555
(http://iopscience.iop.org/0305-4470/39/36/L01)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.106
The article was downloaded on 03/06/2010 at 04:48

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Separability and entanglement of identical bosonic systems

Xiao-Hong Wang ${ }^{1}$, Shao-Ming Fei ${ }^{1,2}$ and Ke Wu ${ }^{1}$
${ }^{1}$ Department of Mathematics, Capital Normal University, Beijing, People's Republic of China
${ }^{2}$ Max-Planck-Institute for Mathematics in the Sciences, 04103 Leipzig, Germany

Received 26 October 2005, in final form 11 November 2005
Published 18 August 2006
Online at stacks.iop.org/JPhysA/39/L555

Abstract

We investigate the separability of arbitrary n-dimensional multipartite identical bosonic systems. An explicit relation between the dimension and the separability is presented. In particular, for $n=3$, it is shown that the property of PPT (positive partial transpose) and the separability are equivalent for tripartite systems.

PACS numbers: $03.67 . \mathrm{Hk}, 03.65 . \mathrm{Ta}, 89.70 .+\mathrm{c}$

Quantum entanglement plays essential roles in quantum information processing and quantum computation. The entangled states provide key resources for a vast variety of novel phenomena such as quantum cryptography, quantum teleportation, super dense coding, etc [1]. An important problem in the theory of quantum entanglement is the separability. One of the famous separability criteria was given by Peres [2]. It says that all separable states necessarily have a positive partial transpose (PPT), which is further shown to be also sufficient for states on $\mathbb{C}^{2} \otimes \mathbb{C}^{2}$ and $\mathbb{C}^{2} \otimes \mathbb{C}^{3}[3,4]$, where \mathbb{C}^{n} denotes the n-dimensional complex space. There have been many results on the separability and entanglements of mixed states, see e.g., [5-9]. In particular, it is shown that every quantum states ρ supported on $\mathbb{C}^{M} \otimes \mathbb{C}^{N}, \mathbb{C}^{2} \otimes \mathbb{C}^{2} \otimes \mathbb{C}^{N}$ and $\mathbb{C}^{2} \otimes \mathbb{C}^{3} \otimes \mathbb{C}^{N}$ with positive partial transposes and $\operatorname{rank} r(\rho) \leqslant N$ are separable and have a canonical form [5-7].

Although the entanglement is extensively studied for distinguishable particle systems, the entanglement of identical particle systems has been less investigated. In fact in certain systems such as quantum dots [10], Bose-Einstein condensates [11] and parametric down conversion [12], the entanglement should be treated as the one of identical particle systems. Schliemann et al $[10,13]$ have discussed the entanglement in two-fermion systems. They found that the entanglement in two-fermion systems is analogous to that in a two-distinguishable particle system. The results for two-boson systems are quite different. Li et al [14] and Paskauskas and You [15] have studied this problem of two-boson systems. For multipartite bosonic systems, there are very few discussions. Recently, the author in [16] obtained the canonical form for
pure states of three identical bosons and classified the entanglement correlation into two types, the analogous GHZ and the W-types. In [17], it has been shown that rank n and rank $\frac{n(n+1)}{2}-2$ PPT bosonic mixed states in the symmetrized tensor product space $\mathcal{S}\left(\mathbb{C}^{n} \otimes \mathbb{C}^{n}\right)$ are separable, and all three-qubit ($n=2$) bosonic PPT states are separable as well. For bosonic mixed state ρ in a k-qubit system, $k \geqslant 4, \rho$ is PPT, which implies that ρ is separable, except for the case of maximal rank.

In this letter, we investigate the separability of multipartite identical bosonic systems with arbitrary dimension n. Let $\mathcal{H}=\mathcal{S}\left(\mathbb{C}^{n} \otimes \mathbb{C}^{n} \otimes \cdots \otimes \mathbb{C}^{n}\right)$ denote the symmetrized tensor product space of $k n$-dimensional spaces associated with Alice, Bob, Charle, etc. The dimension of the space \mathcal{H} is given by [18]

$$
\begin{equation*}
I_{n}^{k}=\frac{(n+k-1)!}{k!(n-1)!}=C_{n+k-1}^{k} \tag{1}
\end{equation*}
$$

We first consider the case of $k=3$.
Theorem 1. Let ρ be a bosonic mixed state in $\mathcal{S}\left(\mathbb{C}^{n} \otimes \mathbb{C}^{n} \otimes \mathbb{C}^{n}\right)$, with a positive partial transpose with respect to Alice. If the rank of $\rho, r(\rho) \leqslant n^{2}$, then ρ is separable.

Proof. We first prove the case of $n=3$. Suppose that the state ρ is a PPT state with respect to Alice and has a rank 9. We can treat it as a bipartite PPT state in a 3×9 dimensional space of Alice-(Bob,Charlie). From theorem 1 in [5] (also theorem 1 in [6]), such a state of rank 9 is necessarily separable and can be represented as $\rho=\sum_{i=1}^{9} p_{i}\left|e_{i}, \Psi_{i}\right\rangle\left\langle e_{i}, \Psi_{i}\right|$, where the vectors $\left|\Psi_{i}\right\rangle$ are generally entangled pure states associated with the spaces of Bob and Charlie. As $\left|\Psi_{i}\right\rangle$ are mutually orthogonal, they belong to the range of the reduced density matrix (partial trace with respect to the space associated with Alice) $\operatorname{Tr}_{A} \rho$, and hence $\left|\Psi_{i}\right\rangle \in \mathcal{S}\left(\mathbb{C}^{3} \otimes \mathbb{C}^{3}\right)$. Moreover $\left|e_{i}, \Psi_{i}\right\rangle$ belong to the range of ρ. Therefore $\left|e_{i}, \Psi_{i}\right\rangle \in \mathcal{S}\left(\mathbb{C}^{3} \otimes \mathbb{C}^{3} \otimes \mathbb{C}^{3}\right)$. According to Schmidt decomposition we can write $\left|\Psi_{i}\right\rangle=a_{i}|00\rangle+b_{i}|11\rangle+c_{i}|22\rangle$ for some $a_{i}, b_{i}, c_{i} \in \mathbb{C}$, where $|0\rangle,|1\rangle,|2\rangle$ are the Schmidt basic vectors in \mathbb{C}^{3}. The only possible forms of $\left|e_{i}, \Psi_{i}\right\rangle$ satisfying the above conditions are $|000\rangle,|111\rangle$ or $|222\rangle$. Therefore ρ is separable.

When the rank of ρ is strictly less than $9, \rho$ can be embedded into a smaller space. For instance, if $r(\rho)=8, \rho$ is supported on spaces 2×8 or $3 \times 8 . \rho$ is then separable in the partition Alice-(Bob,Charlie) and can be again written as $\rho=\sum_{i=1}^{8} p_{i}\left|e_{i}, \Psi_{i}\right\rangle\left\langle e_{i}, \Psi_{i}\right|$. By using the same procedure as above, we can prove that $\left|e_{i}, \Psi_{i}\right\rangle$ is fully separable, and hence ρ is separable. The general n-dimensional case can be proved similarly.

Remark 1. From the theorem we see that a bosonic mixed state ρ in $\mathcal{S}\left(\mathbb{C}^{3} \otimes \mathbb{C}^{3} \otimes \mathbb{C}^{3}\right)$ with a positive partial transpose is separable if $r(\rho) \leqslant 9$. As the dimension of the space of $\mathcal{S}\left(\mathbb{C}^{3} \otimes \mathbb{C}^{3} \otimes \mathbb{C}^{3}\right)$ is 10 , theorem 1 says that almost all the PPT bosonic mixed states in $\mathcal{S}\left(\mathbb{C}^{3} \otimes \mathbb{C}^{3} \otimes \mathbb{C}^{3}\right)$ are separable, except for the case $r(\rho)=10$. Hence the rank of a bound entangled state in $\mathcal{S}\left(\mathbb{C}^{3} \otimes \mathbb{C}^{3} \otimes \mathbb{C}^{3}\right)$ has to be 10 .

When $n=4$, we have $I_{4}^{3}=20$. As ρ is separable if $r(\rho) \leqslant 16$, all bound entangled states ρ in $\mathcal{S}\left(\mathbb{C}^{n} \otimes \mathbb{C}^{n} \otimes \mathbb{C}^{n}\right)$ satisfy $17 \leqslant r(\rho) \leqslant 20$.

Theorem 2. Let ρ be a PPT bosonic mixed state in $\mathcal{S}\left(\mathbb{C}^{n} \otimes \mathbb{C}^{n} \otimes \cdots \otimes \mathbb{C}^{n}\right)$ with k subsystems $(k \geqslant 4)$. If $r(\rho) \leqslant I_{n}^{k-1}$, then ρ is separable.

Proof. We prove the case of $n=3$ (the other cases can be proved similarly). Assume that ρ is PPT, say with respect to the space associated with Alice, with rank $I_{3}^{k-1}=\frac{k(k+1)}{2}$.

If we consider ρ as a bipartite state in the partition Alice-the rest, ρ is supported on $\mathbb{C}^{3} \otimes \mathcal{S}\left(\left(\mathbb{C}^{3}\right)^{\otimes k-1}\right)$. From [5], ρ is separable with respect to this partition and has a form,
$\rho=\sum_{i=1}^{\frac{k(k+1)}{2}} p_{i}\left|e_{i}, \Psi_{i}\right\rangle\left\langle e_{i}, \Psi_{i}\right|$, where $\left|e_{i}\right\rangle$ (resp. $\left.\left|\Psi_{i}\right\rangle\right)$ are vectors on the spaces associated with Alice (resp. the rest).

We prove result by induction. We illustrate the procedure by proving the case of $k=4$. As $\left|\Psi_{i}\right\rangle$ belong to the range of the reduced density matrix $\operatorname{Tr}_{A} \rho$, they must belong to $\mathcal{S}\left(\mathbb{C}^{3} \otimes \mathbb{C}^{3} \otimes \mathbb{C}^{3}\right)$. Since ρ is PPT, $\left|\Psi_{i}\right\rangle\left\langle\Psi_{i}\right|$ is a PPT state in $\mathcal{S}\left(\mathbb{C}^{3} \otimes \mathbb{C}^{3} \otimes \mathbb{C}^{3}\right)$. However, the rank $r\left(\left|\Psi_{i}\right\rangle\left\langle\Psi_{i}\right|\right)=1$, from theorem 1, $\left|\Psi_{i}\right\rangle$ is separable, and can be written as $\left|\Psi_{i}\right\rangle=\left|f_{i}, f_{i}, f_{i}\right\rangle$ for some vectors $\left|f_{i}\right\rangle$ in \mathbb{C}^{3}. While the vectors $\left|e_{i}, \Psi_{i}\right\rangle$ belong to the range of ρ and hence $\left|e_{i}, \Psi_{i}\right\rangle \in \mathcal{S}\left(\mathbb{C}^{3} \otimes \mathbb{C}^{3} \otimes \mathbb{C}^{3} \otimes \mathbb{C}^{3}\right)$. Therefore the only possible forms of $\left|e_{i}, \Psi_{i}\right\rangle$ are $\left|f_{i}, f_{i}, f_{i}, f_{i}\right\rangle$. Therefore ρ is separable.

We have presented some separability criteria for multipartite bosonic mixed states. For tripartite PPT states, all bound entangled states have necessarily rank greater than n^{2}. For general multipartite PPT bosonic states with k subsystems $(k \geqslant 4)$, if $r(\rho) \leqslant I_{n}^{k-1}, \rho$ is separable. The results can be used to construct possible bound entangled states of identical bosonic systems. For instance, if $k=4, n=3$, we have $I_{3}^{4}=15$. The rank of a bound entangled state has to be between $I_{3}^{3}=10$ and 15 .

Acknowledgment

The work is supported by Beijing Municipal Education Commission (no. KM 200510028021), National Natural Science Foundation of China (no. 10375038 and 90403018) and NKBRPC (2004-CB 318000).

References

[1] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[2] Peres A 1996 Phys. Rev. Lett. 771413
[3] Horodecki M, Horodecki P and Horodecki R 1996 Phys. Lett. A 2231
[4] Horodecki P 1997 Phys. Lett. A 232333
[5] Horodecki P, Lewenstein M, Vidal G and Cirac I 2000 Phys. Rev. A 62032310
[6] Karnas S and Lewenstein M 2001 Phys. Rev. A 64042313
[7] Fei S M, Gao X H, Wang X H, Wang Z X and Wu K 2003 Phys. Rev. A 68022315
[8] Albeverio S, Fei S M and Goswami D 2001 Phys. Lett. A 28691 Albeverio S and Fei S M 2001 J. Opt. B: Quantum Semiclass. Opt. 3223 Fei S M, Gao X H, Wang X H, Wang Z X and Wu K 2002 Phys. Lett. A 300559 Fei S M, Gao X H, Wang X H, Wang Z X and Wu K 2003 Int. J. Quantum Inform. 137
[9] Chen K, Albeverio S and Fei S M 2005 Phys. Rev. Lett. 95040504
[10] Schliemann J, Loss D and MacDonald A H 2001 Phys. Rev. B 63085311
[11] Sørensen A, Duan L M, Cirac J I and Zoller P 2001 Nature 40963
[12] Kim Y H, Chekhova M V, Kulik S P, Rubin M H and Shih Y 2001 Phys. Rev. A 63062301
[13] Schliemann J, Cirac J I, Kuś M, Lewenstein M and Loss D 2001 Phys. Rev. A 64022303
[14] Li Y S, Zeng B, Liu X S and Long G L 2001 Phys. Rev. A 64054302
[15] Paskauskas R and You L 2001 Phys. Rev. A 64042310
[16] Zeng B, Zhou D L, Xu Z and You L 2005 Phys. Rev. A 71042317
[17] Eckert K, Schliemann J, Bruß D and Lewenstein M 2002 Ann. Phys., NY 29988
[18] Hamermesh M 1962 Group Theory and its Application to Physical Problems (Reading, MA: Addison-Wesley)

