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Abstract
We investigate the separability of arbitrary n-dimensional multipartite identical
bosonic systems. An explicit relation between the dimension and the
separability is presented. In particular, for n = 3, it is shown that the property of
PPT (positive partial transpose) and the separability are equivalent for tripartite
systems.

PACS numbers: 03.67.Hk, 03.65.Ta, 89.70.+c

Quantum entanglement plays essential roles in quantum information processing and quantum
computation. The entangled states provide key resources for a vast variety of novel phenomena
such as quantum cryptography, quantum teleportation, super dense coding, etc [1]. An
important problem in the theory of quantum entanglement is the separability. One of the
famous separability criteria was given by Peres [2]. It says that all separable states necessarily
have a positive partial transpose (PPT), which is further shown to be also sufficient for states
on C

2 ⊗ C
2 and C

2 ⊗ C
3 [3, 4], where C

n denotes the n-dimensional complex space. There
have been many results on the separability and entanglements of mixed states, see e.g., [5–9].
In particular, it is shown that every quantum states ρ supported on C

M ⊗ C
N, C

2 ⊗ C
2 ⊗ C

N

and C
2 ⊗ C

3 ⊗ C
N with positive partial transposes and rank r(ρ) � N are separable and have

a canonical form [5–7].
Although the entanglement is extensively studied for distinguishable particle systems, the

entanglement of identical particle systems has been less investigated. In fact in certain systems
such as quantum dots [10], Bose–Einstein condensates [11] and parametric down conversion
[12], the entanglement should be treated as the one of identical particle systems. Schliemann
et al [10, 13] have discussed the entanglement in two-fermion systems. They found that the
entanglement in two-fermion systems is analogous to that in a two-distinguishable particle
system. The results for two-boson systems are quite different. Li et al [14] and Paskauskas and
You [15] have studied this problem of two-boson systems. For multipartite bosonic systems,
there are very few discussions. Recently, the author in [16] obtained the canonical form for
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pure states of three identical bosons and classified the entanglement correlation into two types,
the analogous GHZ and the W-types. In [17], it has been shown that rank n and rank n(n+1)

2 −2
PPT bosonic mixed states in the symmetrized tensor product space S(Cn ⊗ C

n) are separable,
and all three-qubit (n = 2) bosonic PPT states are separable as well. For bosonic mixed state
ρ in a k-qubit system, k � 4, ρ is PPT, which implies that ρ is separable, except for the case
of maximal rank.

In this letter, we investigate the separability of multipartite identical bosonic systems with
arbitrary dimension n. LetH = S(Cn ⊗ C

n⊗· · ·⊗C
n) denote the symmetrized tensor product

space of k n-dimensional spaces associated with Alice, Bob, Charle, etc. The dimension of
the space H is given by [18]

I k
n = (n + k − 1)!

k!(n − 1)!
= Ck

n+k−1. (1)

We first consider the case of k = 3.

Theorem 1. Let ρ be a bosonic mixed state in S(Cn ⊗ C
n ⊗ C

n), with a positive partial
transpose with respect to Alice. If the rank of ρ, r(ρ) � n2, then ρ is separable.

Proof. We first prove the case of n = 3. Suppose that the state ρ is a PPT state with respect
to Alice and has a rank 9. We can treat it as a bipartite PPT state in a 3 × 9 dimensional space
of Alice–(Bob,Charlie). From theorem 1 in [5] (also theorem 1 in [6]), such a state of rank
9 is necessarily separable and can be represented as ρ = ∑9

i=1 pi |ei, �i〉〈ei, �i |, where the
vectors |�i〉 are generally entangled pure states associated with the spaces of Bob and Charlie.
As |�i〉 are mutually orthogonal, they belong to the range of the reduced density matrix (partial
trace with respect to the space associated with Alice) TrAρ, and hence |�i〉 ∈ S(C3 ⊗ C

3).
Moreover |ei, �i〉 belong to the range of ρ. Therefore |ei, �i〉 ∈ S(C3 ⊗C

3 ⊗C
3). According

to Schmidt decomposition we can write |�i〉 = ai |00〉+bi |11〉+ci |22〉 for some ai, bi, ci ∈ C,
where |0〉, |1〉, |2〉 are the Schmidt basic vectors in C

3. The only possible forms of |ei, �i〉
satisfying the above conditions are |000〉, |111〉 or |222〉. Therefore ρ is separable.

When the rank of ρ is strictly less than 9, ρ can be embedded into a smaller space. For
instance, if r(ρ) = 8, ρ is supported on spaces 2 × 8 or 3 × 8. ρ is then separable in the
partition Alice–(Bob,Charlie) and can be again written as ρ = ∑8

i=1 pi |ei, �i〉〈ei, �i |. By
using the same procedure as above, we can prove that |ei, �i〉 is fully separable, and hence ρ

is separable. The general n-dimensional case can be proved similarly. �

Remark 1. From the theorem we see that a bosonic mixed state ρ in S(C3 ⊗ C
3 ⊗ C

3)

with a positive partial transpose is separable if r(ρ) � 9. As the dimension of the space
of S(C3 ⊗ C

3 ⊗ C
3) is 10, theorem 1 says that almost all the PPT bosonic mixed states in

S(C3 ⊗ C
3 ⊗ C

3) are separable, except for the case r(ρ) = 10. Hence the rank of a bound
entangled state in S(C3 ⊗ C

3 ⊗ C
3) has to be 10.

When n = 4, we have I 3
4 = 20. As ρ is separable if r(ρ) � 16, all bound entangled

states ρ in S(Cn ⊗ C
n ⊗ C

n) satisfy 17 � r(ρ) � 20.

Theorem 2. Let ρ be a PPT bosonic mixed state in S(Cn ⊗ C
n ⊗ · · ·⊗ C

n) with k subsystems
(k � 4). If r(ρ) � I k−1

n , then ρ is separable.

Proof. We prove the case of n = 3 (the other cases can be proved similarly). Assume that ρ

is PPT, say with respect to the space associated with Alice, with rank I k−1
3 = k(k+1)

2 .
If we consider ρ as a bipartite state in the partition Alice–the rest, ρ is supported on

C
3 ⊗ S((C3)⊗k−1). From [5], ρ is separable with respect to this partition and has a form,
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ρ = ∑ k(k+1)

2
i=1 pi |ei, �i〉〈ei, �i |, where |ei〉 (resp. |�i〉) are vectors on the spaces associated

with Alice (resp. the rest).
We prove result by induction. We illustrate the procedure by proving the case of

k = 4. As |�i〉 belong to the range of the reduced density matrix TrAρ, they must
belong to S(C3 ⊗ C

3 ⊗ C
3). Since ρ is PPT, |�i〉〈�i | is a PPT state in S(C3 ⊗ C

3 ⊗ C
3).

However, the rank r(|�i〉〈�i |) = 1, from theorem 1, |�i〉 is separable, and can be written
as |�i〉 = |fi, fi, fi〉 for some vectors |fi〉 in C

3. While the vectors |ei, �i〉 belong to the
range of ρ and hence |ei, �i〉 ∈ S(C3 ⊗ C

3 ⊗ C
3 ⊗ C

3). Therefore the only possible forms
of |ei, �i〉 are |fi, fi, fi, fi〉. Therefore ρ is separable. �

We have presented some separability criteria for multipartite bosonic mixed states. For
tripartite PPT states, all bound entangled states have necessarily rank greater than n2. For
general multipartite PPT bosonic states with k subsystems (k � 4), if r(ρ) � I k−1

n , ρ is
separable. The results can be used to construct possible bound entangled states of identical
bosonic systems. For instance, if k = 4, n = 3, we have I 4

3 = 15. The rank of a bound
entangled state has to be between I 3

3 = 10 and 15.
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